Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Cardiovasc Res ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626311

RESUMO

AIMS: Potential loss-of-function variants of ATP13A3, the gene encoding a P5B-type transport ATPase of undefined function, were recently identified in pulmonary arterial hypertension (PAH) patients. ATP13A3 is implicated in polyamine transport but its function has not been fully elucidated. Here, we sought to determine the biological function of ATP13A3 in vascular endothelial cells and how PAH-associated variants may contribute to disease pathogenesis. METHODS AND RESULTS: We studied the impact of ATP13A3 deficiency and overexpression in endothelial cell (EC) models (human pulmonary ECs, blood outgrowth ECs (BOECs) and HMEC-1 cells), including a PAH patient-derived BOEC line harbouring an ATP13A3 variant (LK726X). We also generated mice harbouring an Atp13a3 variant analogous to a human disease-associated variant to establish whether these mice develop PAH.ATP13A3 localised to the recycling endosomes of human ECs. Knockdown of ATP13A3 in ECs generally reduced the basal polyamine content and altered the expression of enzymes involved in polyamine metabolism. Conversely, overexpression of wild-type ATP13A3 increased polyamine uptake. Functionally, loss of ATP13A3 was associated with reduced EC proliferation, increased apoptosis in serum starvation and increased monolayer permeability to thrombin. Assessment of five PAH-associated missense ATP13A3 variants (L675V, M850I, V855M, R858H, L956P) confirmed loss-of-function phenotypes represented by impaired polyamine transport and dysregulated EC function. Furthermore, mice carrying a heterozygous germ-line Atp13a3 frameshift variant representing a human variant spontaneously developed a PAH phenotype, with increased pulmonary pressures, right ventricular remodelling and muscularisation of pulmonary vessels. CONCLUSION: We identify ATP13A3 as a polyamine transporter controlling polyamine homeostasis in ECs, deficiency of which leads to EC dysfunction and predisposes to PAH. This suggests a need for targeted therapies to alleviate the imbalances in polyamine homeostasis and EC dysfunction in PAH.

3.
J Am Heart Assoc ; 13(6): e032256, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38456412

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) exhibits phenotypic heterogeneity and variable response to therapy. The metabolome has been implicated in the pathogenesis of PAH, but previous works have lacked power to implicate specific metabolites. Mendelian randomization (MR) is a method for causal inference between exposures and outcomes. METHODS AND RESULTS: Using genome-wide association study summary statistics, we implemented MR analysis to test for potential causal relationships between serum concentration of 575 metabolites and PAH. Five metabolites were causally associated with the risk of PAH after multiple testing correction. Next, we measured serum concentration of candidate metabolites in an independent clinical cohort of 449 patients with PAH to check whether metabolite concentrations are correlated with markers of disease severity. Of the 5 candidates nominated by our MR work, serine was negatively associated and homostachydrine was positively associated with clinical severity of PAH via direct measurement in this independent clinical cohort. Finally we used conditional and orthogonal approaches to explore the biology underlying our lead metabolites. Rare variant burden testing was carried out using whole exome sequencing data from 578 PAH cases and 361 675 controls. Multivariable MR is an extension of MR that uses a single set of instrumental single-nucleotide polymorphisms to measure multiple exposures; multivariable MR is used to determine interdependence between the effects of different exposures on a single outcome. Rare variant analysis demonstrated that loss-of-function mutations within activating transcription factor 4, a transcription factor responsible for upregulation of serine synthesis under conditions of serine starvation, are associated with higher risk for PAH. Homostachydrine is a xenobiotic metabolite that is structurally related to l-proline betaine, which has previously been linked to modulation of inflammation and tissue remodeling in PAH. Our multivariable MR analysis suggests that the effect of l-proline betaine is actually mediated indirectly via homostachydrine. CONCLUSIONS: Our data present a method for study of the metabolome in the context of PAH, and suggests several candidates for further evaluation and translational research.


Assuntos
Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Seguimentos , Hipertensão Pulmonar Primária Familiar/genética , Serina
4.
Chest ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38508334

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a heterogeneous disease with poor prognosis. Accurate risk stratification is essential for guiding treatment decisions in pulmonary arterial hypertension (PAH). While various risk models were developed for PAH, their comparative prognostic potential requires further exploration. Additionally, the applicability of risk scores in PH groups beyond group 1 remains to be investigated. RESEARCH QUESTION: Are risk scores originally developed for PAH predictive in PH group 1-4? STUDY DESIGN AND METHODS: We conducted a comprehensive analysis of outcomes among incident PH patients enrolled in the multicenter worldwide PVRI-GoDeep meta-registry. Analyses were performed across PH groups 1-4 and further subgroups to evaluate the predictive value of PAH-risk scores, including REVEAL Lite 2, REVEAL 2.0, ESC/ERS 2022, COMPERA 3-strata and COMPERA 4-strata. RESULTS: 8565 patients were included in the study, of whom 3537 patients were assigned to group 1 PH while 1807, 1635, and 1586 patients were diagnosed with group 2, group 3, and group 4 PH. Pulmonary hemodynamics were impaired with median mPAP of 42 [33,52]mmHg and PVR of 7 [4,11]WU. All risk scores were prognostic in the entire PH population and in each of the PH groups 1-4. The REVEAL scores, when used as continuous prediction models, possessed the highest statistical prognostic power and granularity; the COMPERA 4-strata risk score provided sub-differentiation of the intermediate-risk group. Similar results were obtained when separately analyzing various subgroups (PH subgroups 1.1, 1.4.1, 1.4.4; 3.1, 3.2; group 2 with isolated post-capillary-PH versus combined pre-/post-capillary-PH; patients of all groups with concomitant cardiac comorbidities; severe [> 5 WU] versus non-severe PH). INTERPRETATION: This comprehensive study with real-world data from 15 PH-centers showed that PAH-designed risk scores possess predictive power in a large PH cohort, whether considered as common group or calculated separately for each PH group (1-4) and various subgroups.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38470220

RESUMO

RATIONALE: Chronic Thromboembolic Pulmonary Hypertension involves formation and non-resolution of thrombus, dysregulated inflammation, angiogenesis and the development of a small vessel vasculopathy. OBJECTIVES: We aimed to establish the genetic basis of chronic thromboembolic pulmonary hypertension to gain insight into its pathophysiological contributors. METHODS: We conducted a genome-wide association study on 1907 European cases and 10363 European controls. We co-analysed our results with existing results from genome-wide association studies on deep vein thrombosis, pulmonary embolism and idiopathic pulmonary arterial hypertension. MEASUREMENTS AND MAIN RESULTS: Our primary association study revealed genetic associations at the ABO, FGG, F11, MYH7B, and HLA-DRA loci. Through our co-analysis we demonstrate further associations with chronic thromboembolic pulmonary hypertension at the F2, TSPAN15, SLC44A2 and F5 loci but find no statistically significant associations shared with idiopathic pulmonary arterial hypertension. CONCLUSIONS: Chronic thromboembolic pulmonary hypertension is a partially heritable polygenic disease, with related though distinct genetic associations to pulmonary embolism and to deep vein thrombosis.

6.
Sci Transl Med ; 16(729): eadd2029, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198571

RESUMO

Hypoxic reprogramming of vasculature relies on genetic, epigenetic, and metabolic circuitry, but the control points are unknown. In pulmonary arterial hypertension (PAH), a disease driven by hypoxia inducible factor (HIF)-dependent vascular dysfunction, HIF-2α promoted expression of neighboring genes, long noncoding RNA (lncRNA) histone lysine N-methyltransferase 2E-antisense 1 (KMT2E-AS1) and histone lysine N-methyltransferase 2E (KMT2E). KMT2E-AS1 stabilized KMT2E protein to increase epigenetic histone 3 lysine 4 trimethylation (H3K4me3), driving HIF-2α-dependent metabolic and pathogenic endothelial activity. This lncRNA axis also increased HIF-2α expression across epigenetic, transcriptional, and posttranscriptional contexts, thus promoting a positive feedback loop to further augment HIF-2α activity. We identified a genetic association between rs73184087, a single-nucleotide variant (SNV) within a KMT2E intron, and disease risk in PAH discovery and replication patient cohorts and in a global meta-analysis. This SNV displayed allele (G)-specific association with HIF-2α, engaged in long-range chromatin interactions, and induced the lncRNA-KMT2E tandem in hypoxic (G/G) cells. In vivo, KMT2E-AS1 deficiency protected against PAH in mice, as did pharmacologic inhibition of histone methylation in rats. Conversely, forced lncRNA expression promoted more severe PH. Thus, the KMT2E-AS1/KMT2E pair orchestrates across convergent multi-ome landscapes to mediate HIF-2α pathobiology and represents a key clinical target in pulmonary hypertension.


Assuntos
Hipertensão Pulmonar , RNA Longo não Codificante , Humanos , Ratos , Animais , Camundongos , Alelos , Hipertensão Pulmonar/genética , Histonas , RNA Longo não Codificante/genética , Roedores , Lisina , Hipertensão Pulmonar Primária Familiar , Hipóxia/genética , Metiltransferases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
7.
Nat Commun ; 15(1): 330, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184627

RESUMO

Pulmonary arterial hypertension (PAH) is characterised by pulmonary vascular remodelling causing premature death from right heart failure. Established DNA variants influence PAH risk, but susceptibility from epigenetic changes is unknown. We addressed this through epigenome-wide association study (EWAS), testing 865,848 CpG sites for association with PAH in 429 individuals with PAH and 1226 controls. Three loci, at Cathepsin Z (CTSZ, cg04917472), Conserved oligomeric Golgi complex 6 (COG6, cg27396197), and Zinc Finger Protein 678 (ZNF678, cg03144189), reached epigenome-wide significance (p < 10-7) and are hypermethylated in PAH, including in individuals with PAH at 1-year follow-up. Of 16 established PAH genes, only cg10976975 in BMP10 shows hypermethylation in PAH. Hypermethylation at CTSZ is associated with decreased blood cathepsin Z mRNA levels. Knockdown of CTSZ expression in human pulmonary artery endothelial cells increases caspase-3/7 activity (p < 10-4). DNA methylation profiles are altered in PAH, exemplified by the pulmonary endothelial function modifier CTSZ, encoding protease cathepsin Z.


Assuntos
Hipertensão Arterial Pulmonar , Humanos , Proteínas Morfogenéticas Ósseas , Catepsina Z , Metilação de DNA/genética , Células Endoteliais , Hipertensão Pulmonar Primária Familiar
9.
Am J Respir Crit Care Med ; 208(8): 879-895, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37676930

RESUMO

Rationale: Immune dysregulation is a common feature of pulmonary arterial hypertension (PAH). Histone deacetylase (HDAC)-dependent transcriptional reprogramming epigenetically modulates immune homeostasis and is a novel disease-oriented approach in modern times. Objectives: To identify a novel functional link between HDAC and regulatory T cells (Tregs) in PAH, aiming to establish disease-modified biomarkers and therapeutic targets. Methods: Peripheral blood mononuclear cells were isolated from patients with idiopathic PAH (IPAH) and rodent models of pulmonary hypertension (PH): monocrotaline rats, Sugen5416-hypoxia rats, and Treg-depleted mice. HDAC inhibitor vorinostat (suberoylanilide hydroxamic acid, SAHA) was used to examine the immune modulatory effects in vivo, ex vivo, and in vitro. Measurements and Main Results: Increased HDAC expression was associated with reduced Foxp3+ Tregs and increased PD-1 (programmed cell death-1) signaling in peripheral blood mononuclear cells from patients with IPAH. SAHA differentially modified a cluster of epigenetic-sensitive genes and induced Foxp3+ Treg conversion in IPAH T cells. Rodent models recapitulated these epigenetic aberrations and T-cell dysfunction. SAHA attenuated PH phenotypes and restored FOXP3 transcription and Tregs in PH rats; interestingly, the effects were more profound in female rats. Selective depletion of CD25+ Tregs in Sugen5416-hypoxia mice neutralized the effects of SAHA. Furthermore, SAHA inhibited endothelial cytokine/chemokine release upon stimulation and subsequent immune chemotaxis. Conclusions: Our results indicated HDAC aberration was associated with Foxp3+ Treg deficiency and demonstrated an epigenetic-mediated mechanism underlying immune dysfunction in PAH. Restoration of Foxp3+ Tregs by HDAC inhibitors is a promising approach to resolve pulmonary vascular pathology, highlighting the potential benefit of developing epigenetic therapies for PAH.

10.
Nat Commun ; 14(1): 4941, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604819

RESUMO

Cardiovascular ageing is a process that begins early in life and leads to a progressive change in structure and decline in function due to accumulated damage across diverse cell types, tissues and organs contributing to multi-morbidity. Damaging biophysical, metabolic and immunological factors exceed endogenous repair mechanisms resulting in a pro-fibrotic state, cellular senescence and end-organ damage, however the genetic architecture of cardiovascular ageing is not known. Here we use machine learning approaches to quantify cardiovascular age from image-derived traits of vascular function, cardiac motion and myocardial fibrosis, as well as conduction traits from electrocardiograms, in 39,559 participants of UK Biobank. Cardiovascular ageing is found to be significantly associated with common or rare variants in genes regulating sarcomere homeostasis, myocardial immunomodulation, and tissue responses to biophysical stress. Ageing is accelerated by cardiometabolic risk factors and we also identify prescribed medications that are potential modifiers of ageing. Through large-scale modelling of ageing across multiple traits our results reveal insights into the mechanisms driving premature cardiovascular ageing and reveal potential molecular targets to attenuate age-related processes.


Assuntos
Senilidade Prematura , Envelhecimento , Humanos , Envelhecimento/genética , Eletrocardiografia , Senescência Celular , Miocárdio
11.
Lancet Digit Health ; 5(7): e467-e476, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37391266

RESUMO

The past decade has seen a dramatic rise in consumer technologies able to monitor a variety of cardiovascular parameters. Such devices initially recorded markers of exercise, but now include physiological and health-care focused measurements. The public are keen to adopt these devices in the belief that they are useful to identify and monitor cardiovascular disease. Clinicians are therefore often presented with health app data accompanied by a diverse range of concerns and queries. Herein, we assess whether these devices are accurate, their outputs validated, and whether they are suitable for professionals to make management decisions. We review underpinning methods and technologies and explore the evidence supporting the use of these devices as diagnostic and monitoring tools in hypertension, arrhythmia, heart failure, coronary artery disease, pulmonary hypertension, and valvular heart disease. Used correctly, they might improve health care and support research.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Doença da Artéria Coronariana , Insuficiência Cardíaca , Dispositivos Eletrônicos Vestíveis , Humanos , Doenças Cardiovasculares/diagnóstico
12.
Circulation ; 147(24): 1809-1822, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37096577

RESUMO

BACKGROUND: Activins are novel therapeutic targets in pulmonary arterial hypertension (PAH). We therefore studied whether key members of the activin pathway could be used as PAH biomarkers. METHODS: Serum levels of activin A, activin B, α-subunit of inhibin A and B proteins, and the antagonists follistatin and follistatin-like 3 (FSTL3) were measured in controls and in patients with newly diagnosed idiopathic, heritable, or anorexigen-associated PAH (n=80) at baseline and 3 to 4 months after treatment initiation. The primary outcome was death or lung transplantation. Expression patterns of the inhibin subunits, follistatin, FSTL3, Bambi, Cripto, and the activin receptors type I (ALK), type II (ACTRII), and betaglycan were analyzed in PAH and control lung tissues. RESULTS: Death or lung transplantation occurred in 26 of 80 patients (32.5%) over a median follow-up of 69 (interquartile range, 50-81) months. Both baseline (hazard ratio, 1.001 [95% CI, 1.000-1.001]; P=0.037 and 1.263 [95% CI, 1.049-1.520]; P=0.014, respectively) and follow-up (hazard ratio, 1.003 [95% CI, 1.001-1.005]; P=0.001 and 1.365 [95% CI, 1.185-1.573]; P<0.001, respectively) serum levels of activin A and FSTL3 were associated with transplant-free survival in a model adjusted for age and sex. Thresholds determined by receiver operating characteristic analyses were 393 pg/mL for activin A and 16.6 ng/mL for FSTL3. When adjusted with New York Heart Association functional class, 6-minute walk distance, and N-terminal pro-B-type natriuretic peptide, the hazard ratios for transplant-free survival for baseline activin A <393 pg/mL and FSTL3 <16.6 ng/mL were, respectively, 0.14 (95% CI, 0.03-0.61; P=0.009) and 0.17 (95% CI, 0.06-0.45; P<0.001), and for follow-up measures, 0.23 (95% CI, 0.07-0.78; P=0.019) and 0.27 (95% CI, 0.09-0.78, P=0.015), respectively. Prognostic values of activin A and FSTL3 were confirmed in an independent external validation cohort. Histological analyses showed a nuclear accumulation of the phosphorylated form of Smad2/3, higher immunoreactivities for ACTRIIB, ALK2, ALK4, ALK5, ALK7, Cripto, and FSTL3 in vascular endothelial and smooth muscle layers, and lower immunostaining for inhibin-α and follistatin. CONCLUSIONS: These findings offer new insights into the activin signaling system in PAH and show that activin A and FSTL3 are prognostic biomarkers for PAH.


Assuntos
Folistatina , Hipertensão Arterial Pulmonar , Humanos , Folistatina/metabolismo , Inibinas/metabolismo , Ativinas/metabolismo , Pulmão/metabolismo
13.
Circulation ; 147(21): 1606-1621, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37066790

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease characterized by remodeling of the pulmonary arteries, increased vascular resistance, and right-sided heart failure. Genome-wide association studies of idiopathic/heritable PAH established novel genetic risk variants, including conserved enhancers upstream of transcription factor (TF) SOX17 containing 2 independent signals. SOX17 is an important TF in embryonic development and in the homeostasis of pulmonary artery endothelial cells (hPAEC) in the adult. Rare pathogenic mutations in SOX17 cause heritable PAH. We hypothesized that PAH risk alleles in an enhancer region impair TF-binding upstream of SOX17, which in turn reduces SOX17 expression and contributes to disturbed endothelial cell function and PAH development. METHODS: CRISPR manipulation and siRNA were used to modulate SOX17 expression. Electromobility shift assays were used to confirm in silico-predicted TF differential binding to the SOX17 variants. Functional assays in hPAECs were used to establish the biological consequences of SOX17 loss. In silico analysis with the connectivity map was used to predict compounds that rescue disturbed SOX17 signaling. Mice with deletion of the SOX17-signal 1 enhancer region (SOX17-4593/enhKO) were phenotyped in response to chronic hypoxia and SU5416/hypoxia. RESULTS: CRISPR inhibition of SOX17-signal 2 and deletion of SOX17-signal 1 specifically decreased SOX17 expression. Electromobility shift assays demonstrated differential binding of hPAEC nuclear proteins to the risk and nonrisk alleles from both SOX17 signals. Candidate TFs HOXA5 and ROR-α were identified through in silico analysis and antibody electromobility shift assays. Analysis of the hPAEC transcriptomes revealed alteration of PAH-relevant pathways on SOX17 silencing, including extracellular matrix regulation. SOX17 silencing in hPAECs resulted in increased apoptosis, proliferation, and disturbance of barrier function. With the use of the connectivity map, compounds were identified that reversed the SOX17-dysfunction transcriptomic signatures in hPAECs. SOX17 enhancer knockout in mice reduced lung SOX17 expression, resulting in more severe pulmonary vascular leak and hypoxia or SU5416/hypoxia-induced pulmonary hypertension. CONCLUSIONS: Common PAH risk variants upstream of the SOX17 promoter reduce endothelial SOX17 expression, at least in part, through differential binding of HOXA5 and ROR-α. Reduced SOX17 expression results in disturbed hPAEC function and PAH. Existing drug compounds can reverse the disturbed SOX17 pulmonary endothelial transcriptomic signature.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Camundongos , Animais , Hipertensão Pulmonar/metabolismo , Estudo de Associação Genômica Ampla , Células Endoteliais/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar , Hipóxia/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Fatores de Transcrição/metabolismo , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo
14.
Cells ; 12(2)2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672250

RESUMO

Bone morphogenic protein receptor 2 (BMPR2) expression and signaling are impaired in pulmonary arterial hypertension (PAH). How BMPR2 signaling is decreased in PAH is poorly understood. Protein tyrosine phosphatases (PTPs) play important roles in vascular remodeling in PAH. To identify whether PTPs modify BMPR2 signaling, we used a siRNA-mediated high-throughput screening of 22,124 murine genes in mouse myoblastoma reporter cells using ID1 expression as readout for BMPR2 signaling. We further experimentally validated the top hit, PTPN1 (PTP1B), in healthy human pulmonary arterial endothelial cells (PAECs) either silenced by siRNA or exposed to hypoxia and confirmed its relevance to PAH by measuring PTPN1 levels in blood and PAECs collected from PAH patients. We identified PTPN1 as a novel regulator of BMPR2 signaling in PAECs, which is downregulated in the blood of PAH patients, and documented that downregulation of PTPN1 is linked to endothelial dysfunction in PAECs. These findings point to a potential involvement for PTPN1 in PAH and will aid in our understanding of the molecular mechanisms involved in the disease.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Doenças Vasculares , Animais , Humanos , Camundongos , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Células Endoteliais/metabolismo , Hipertensão Pulmonar/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , RNA Interferente Pequeno/metabolismo , Doenças Vasculares/metabolismo
15.
bioRxiv ; 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36712057

RESUMO

Pulmonary arterial hypertension (PAH) remains an incurable and often fatal disease despite currently available therapies. Multiomics systems biology analysis can shed new light on PAH pathobiology and inform translational research efforts. Using RNA sequencing on the largest PAH lung biobank to date (96 disease and 52 control), we aim to identify gene co-expression network modules associated with PAH and potential therapeutic targets. Co-expression network analysis was performed to identify modules of co-expressed genes which were then assessed for and prioritized by importance in PAH, regulatory role, and therapeutic potential via integration with clinicopathologic data, human genome-wide association studies (GWAS) of PAH, lung Bayesian regulatory networks, single-cell RNA-sequencing data, and pharmacotranscriptomic profiles. We identified a co-expression module of 266 genes, called the pink module, which may be a response to the underlying disease process to counteract disease progression in PAH. This module was associated not only with PAH severity such as increased PVR and intimal thickness, but also with compensated PAH such as lower number of hospitalizations, WHO functional class and NT-proBNP. GWAS integration demonstrated the pink module is enriched for PAH-associated genetic variation in multiple cohorts. Regulatory network analysis revealed that BMPR2 regulates the main target of FDA-approved riociguat, GUCY1A2, in the pink module. Analysis of pathway enrichment and pink hub genes (i.e. ANTXR1 and SFRP4) suggests the pink module inhibits Wnt signaling and epithelial-mesenchymal transition. Cell type deconvolution showed the pink module correlates with higher vascular cell fractions (i.e. myofibroblasts). A pharmacotranscriptomic screen discovered ubiquitin-specific peptidases (USPs) as potential therapeutic targets to mimic the pink module signature. Our multiomics integrative study uncovered a novel gene subnetwork associated with clinicopathologic severity, genetic risk, specific vascular cell types, and new therapeutic targets in PAH. Future studies are warranted to investigate the role and therapeutic potential of the pink module and targeting USPs in PAH.

16.
Am J Respir Cell Mol Biol ; 68(1): 103-115, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36264759

RESUMO

Mitochondrial fission and a metabolic switch from oxidative phosphorylation to glycolysis are key features of vascular pathology in pulmonary arterial hypertension (PAH) and are associated with exuberant endothelial proliferation and apoptosis. The underlying mechanisms are poorly understood. We describe the contribution of two intracellular chloride channel proteins, CLIC1 and CLIC4, both highly expressed in PAH and cancer, to mitochondrial dysfunction and energy metabolism in PAH endothelium. Pathological overexpression of CLIC proteins induces mitochondrial fragmentation, inhibits mitochondrial cristae formation, and induces metabolic shift toward glycolysis in human pulmonary artery endothelial cells, consistent with changes observed in patient-derived cells. Interactions of CLIC proteins with structural components of the inner mitochondrial membrane offer mechanistic insights. Endothelial CLIC4 excision and mitofusin 2 supplementation have protective effects in human PAH cells and preclinical PAH. This study is the first to demonstrate the key role of endothelial intracellular chloride channels in the regulation of mitochondrial structure, biogenesis, and metabolic reprogramming in expression of the PAH phenotype.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Artéria Pulmonar/patologia , Endotélio/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo
17.
Eur Respir J ; 61(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549710

RESUMO

BACKGROUND: Risk stratification and assessment of disease progression in patients with pulmonary arterial hypertension (PAH) are challenged by the lack of accurate disease-specific and prognostic biomarkers. To date, brain natriuretic peptide (BNP) and/or its N-terminal fragment (NT-proBNP) are the only markers for right ventricular dysfunction used in clinical practice, in association with echocardiographic and invasive haemodynamic variables to predict outcome in patients with PAH. METHODS: This study was designed to identify an easily measurable biomarker panel in the serum of 80 well-phenotyped PAH patients with idiopathic, heritable or drug-induced PAH at baseline and at first follow-up. The prognostic value of identified cytokines of interest was secondly analysed in an external validation cohort of 125 PAH patients. RESULTS: Among the 20 biomarkers studied with the multiplex Ella platform, we identified a three-biomarker panel composed of ß-NGF, CXCL9 and TRAIL that were independently associated with prognosis both at the time of PAH diagnosis and at the first follow-up after initiation of PAH therapy. ß-NGF and CXCL9 were predictors of death or transplantation, whereas high levels of TRAIL were associated with a better prognosis. Furthermore, the prognostic value of the three cytokines was more powerful for predicting survival than usual non-invasive variables (New York Heart Association Functional Class, 6-min walk distance and BNP/NT-proBNP). The results were validated in a fully independent external validation cohort. CONCLUSION: The monitoring of ß-NGF, CXCL9 and TRAIL levels in serum should be considered in the management and treatment of patients with PAH to objectively guide therapeutic options.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Prognóstico , Citocinas , Hipertensão Pulmonar Primária Familiar , Biomarcadores , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos
18.
J Heart Lung Transplant ; 42(2): 173-182, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36470771

RESUMO

BACKGROUND: Subtypes of pulmonary arterial hypertension (PAH) differ in both fundamental disease features and clinical outcomes. Angiogenesis and inflammation represent disease features that may differ across subtypes and are of special interest in connective tissue disease-associated PAH (CTD-PAH). We compared inflammatory and angiogenic biomarker profiles across different etiologies of PAH and related them to clinical outcomes. METHODS: Participants with idiopathic PAH, CTD-PAH, toxin-associated PAH (tox-PAH), or congenital heart disease-associated PAH (CHD-PAH) were enrolled into a prospective observational cohort. Baseline serum concentrations of 33 biomarkers were related to 3-year mortality, echocardiogram, REVEAL score, and 6-minute walk distance (6MWD). Findings were validated using plasma proteomic data from the UK PAH Cohort Study. RESULTS: One hundred twelve patients were enrolled: 45 idiopathic, 27 CTD-PAH, 20 tox-PAH, and 20 CHD-PAH. Angiogenic and inflammatory biomarkers were distinctly elevated within the CTD-PAH cohort. Six biomarkers were associated with mortality within the entire PAH cohort: interleukin-6 (IL-6, HR:1.6, 95% CI:1.18-2.18), soluble fms-like tyrosine kinase 1 (sFlt-1, HR:1.35, 95% CI:1.02-1.80), placental growth factor (PlGF, HR:1.55, 95% CI:1.07-2.25), interferon gamma-induced protein 10 (IP-10, HR:1.44, 95% CI:1.04-1.99), tumor necrosis factor-beta (TNF-ß, HR:1.81, 95% CI:1.11-2.95), and NT-proBNP (HR:2.19, 95% CI:1.52-3.14). Only IL-6 and NT-proBNP remained significant after controlling for multiple comparisons. IL-6, IP-10, and sFlt-1 significantly associated with mortality in CTD-PAH, but not non-CTD-PAH subgroups. In the UK cohort, IP-10, PlGF, TNF-ß, and NT-proBNP significantly associated with 5-year survival. CONCLUSION: Levels of angiogenic and inflammatory biomarkers are elevated in CTD-PAH, compared with other etiologies of PAH, and may correlate with clinical outcomes including mortality.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Feminino , Hipertensão Arterial Pulmonar/complicações , Estudos de Coortes , Interleucina-6 , Quimiocina CXCL10 , Linfotoxina-alfa , Proteômica , Fator de Crescimento Placentário , Hipertensão Pulmonar Primária Familiar , Biomarcadores , Inflamação
20.
Commun Biol ; 5(1): 1192, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344664

RESUMO

Pulmonary arterial hypertension (PAH) is an unmet clinical need. The lack of models of human disease is a key obstacle to drug development. We present a biomimetic model of pulmonary arterial endothelial-smooth muscle cell interactions in PAH, combining natural and induced bone morphogenetic protein receptor 2 (BMPR2) dysfunction with hypoxia to induce smooth muscle activation and proliferation, which is responsive to drug treatment. BMPR2- and oxygenation-specific changes in endothelial and smooth muscle gene expression, consistent with observations made in genomic and biochemical studies of PAH, enable insights into underlying disease pathways and mechanisms of drug response. The model captures key changes in the pulmonary endothelial phenotype that are essential for the induction of SMC remodelling, including a BMPR2-SOX17-prostacyclin signalling axis and offers an easily accessible approach for researchers to study pulmonary vascular remodelling and advance drug development in PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Fatores de Transcrição SOXF , Humanos , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Epoprostenol/genética , Epoprostenol/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/genética , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...